Web App Access Control Design

What is Access Control / Authorization?

* Authorization is the process where a
system determines if a specific user
has access to a particular resource

e The intent of authorization is to
ensure that a user only accesses

system functionality to which he is
entitled

* Role based access c ontrol (RBAC) is
commonly used to manage
permissions within an application

Attacks on Access Control

 Vertical Access Control Attacks

— A standard user accessing administration functionality

e Horizontal Access Control attacks

— Same role, but accessing another user's private data

* Business Logic Access Control Attacks

— Abuse of workflow

Access Control Issues

* Many applications utilize an “all or nothing” approach
— Once authenticated all users have equal privilege levels

e Authorization logic often relies on Security Through
Obscurity (STO) by assuming:
— Users won’t find unlinked or “hidden” paths/functionality.

— Users will not find and tamper with “obscured” client side
parameters (i.e. “hidden” form fields, cookies, etc)

* Applications with multiple permission levels/roles
often increases the possibility of conflicting permission
sets resulting in unanticipated privileges

Access Control Anti-Patterns

Hard-coded role checks in application code
Lack of centralized access control logic
Untrusted data driving access control decisions
Access control that is “open by default”

Lack of addressing horizontal access control in a
standardized way (if at all)

Access control logic that needs to be manually
added to every endpoint in code

Hard Coded Roles

1f (user.isManager () ||
user.1sAdministrator () ||
user.i1skEditor () ||
user.1sUser()) {

// execute action

Hard Coded Roles

 Makes “proving” the policy of an application
difficult for audit or Q/A purposes

* Any time access control policy needs to
change, new code need to be pushed

* Fragile, easy to make mistakes

Order Specific Operations

Imagine the following parameters

http://example.com/buy?action=chooseDataPackage
http://example.com/buy?action=customizePackage
http://example.com/buy?action=makePayment

http://example.com/buy?action=downloadData

Can an attacker control the sequence?

Can an attacker abuse this with concurrency?

Never Depend on Untrusted Data

Never trust user data for access control decisions
Never make access control decisions in JavaScript

Never make authorization decisions based solely on

— hidden fields

— cookie values

— form parameters

— URL parameters

— anything else from the request

Never depend on the order of values sent from the client

Access Control Issues

Many administrative interfaces require only a password for authentication

Shared accounts combined with a lack of auditing and logging make it
extremely difficult to differentiate between malicious and honest
administrators

Administrative interfaces are often not designed as “secure” as user-level
interfaces given the assumption that administrators are trusted users

Authorization/Access Control relies on client-side information (e.g., hidden
fields)

<lnput type=“text" name=“fname" value=“Derek”>
<lnput type=“text" name=“lname" value=“Jeter”>

<lnput type=“hidden" name=“usertype" value=“admin”>

Attacking Access Controls

* Elevation of privileges

 Disclosure of confidential data

— Compromising admin-level accounts often results in
access to user’s confidential data

* Data tampering

— Privilege levels do not distinguish users who can only
view data and users permitted to modify data

Testing for Broken Access Control

Attempt to access administrative components or functions as an
anonymous or regular user

— Scour HTML source for “interesting” hidden form fields

— Test web accessible directory structure for names like admin,
administrator, manager, etc (i.e. attempt to directly browse to
“restricted” areas)

Determine how administrators are authenticated. Ensure that
adequate authentication is used and enforced

For each user role, ensure that only the appropriate pages or
components are accessible for that role

If able to compromise administrator-level account, test for all other
common web application vulnerabilities (poor input validation,
privileged database access, etc)

Defenses Against Access Control Attacks

Implement role based access control to assign
permissions to application users for vertical access

control requirements

Implement data-contextual access control to assign
permissions to application users in the context of
specific data items for horizontal access control
requirements

Avoid assigning permissions on a per-user basis

Perform consistent authorization checking routines on
all application pages

Where applicable, apply DENY privileges last, issue
ALLOW privileges on a case-by-case basis

Defenses Against Access Control

Where possible restrict administrator access to
machines located on the local area network (i.e. it’s
best to avoid remote administrator access from
public facing access points)

Log all failed access authorization requests to a
secure location for review by administrators

Perform reviews of failed login attempts on a
periodic basis

Utilise the strengths and functionality provided by
the SSO solution you chose, e.g. Netegrity

Best Practice: Code to the Activity

1f (AC.hasAccess (ARTICLE EDIT)) {

//execute activity

* Code it once, never needs to change again
* Implies policy is persisted/centralized in some way
* Requires more design/work up front to get right

Best Practice: Centralized ACL Controller

Define a centralized access controller

— ACLService.isAuthorized (ACTION_CONSTANT)
— ACLService.assertAuthorized (ACTION CONSTANT)

Access control decisions go through these simple API’s
Centralized logic to drive policy behavior and persistence

May contain data-driven access control policy
information

Using a Centralized Access Controller

In Presentation Layer
1f (isAuthorized (VIEW LOG PANEL))

{
<h2>Here are the logs</h2>

<%=getLogs () ;%/>

In Controller
try (assertAuthorized (DELETE USER))

{
deleteUser () ;

Best Practice: Verifying policy server-side
e Keep user identity verification in session

e Load entitlements server side from trusted
sources

* Force authorization checks on ALL requests
— JS file, image, AJAX and FLASH requests as well!
— Force this check using a filter if possible

SQL Integrated Access Control

Example Feature

http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering

select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!

select * from messages where messageid = 2356342 AND
messages.message owner = <userid from session>

Access Control Positive Patterns

* Code to the activity, not the role

* Centralize access control logic

e Design access control as a filter

* Deny by default, fail securely

* Build centralized access control mechanism

* Apply same core logic to presentation and
server-side access control decisions

e Server-side trusted data should drive access
control

Data Contextual Access Control

Data Contextual / Horizontal Access Control APl examples

— ACLService.isAuthorized (EDIT ORG, 142)
— ACLService.assertAuthorized (VIEW ORG, 900)

Long form

— 1sAuthorized(user, EDIT ORG, Organization.class, 14)

e Essentially checking if the user has the right role in the
context of a specific object

* Protecting data a the lowest level!

Data Contextual Access Control

 User Role/Activity

User ID User Name Role/Activity ID Role/Activity Name

Entitlement / Privilege

User ID Role/Activity ID Data Type ID Data Instance Id

Data Type

Data ID Data Name

