
Web App Access Control Design

What is Access Control / Authorization?

• Authorization is the process where a
system determines if a specific user
has access to a particular resource

• The intent of authorization is to
ensure that a user only accesses
system functionality to which he is
entitled

• Role based access c ontrol (RBAC) is
commonly used to manage
permissions within an application

Attacks on Access Control

• Vertical Access Control Attacks
– A standard user accessing administration functionality

• Horizontal Access Control attacks
– Same role, but accessing another user's private data

• Business Logic Access Control Attacks
– Abuse of workflow

Access Control Issues
• Many applications utilize an “all or nothing” approach
– Once authenticated all users have equal privilege levels

• Authorization logic often relies on Security Through
Obscurity (STO) by assuming:
– Users won’t find unlinked or “hidden” paths/functionality.
– Users will not find and tamper with “obscured” client side

parameters (i.e. “hidden” form fields, cookies, etc)

• Applications with multiple permission levels/roles
often increases the possibility of conflicting permission
sets resulting in unanticipated privileges

Access Control Anti-Patterns

• Hard-coded role checks in application code
• Lack of centralized access control logic
• Untrusted data driving access control decisions
• Access control that is “open by default”
• Lack of addressing horizontal access control in a

standardized way (if at all)
• Access control logic that needs to be manually

added to every endpoint in code

Hard Coded Roles
if (user.isManager() ||

user.isAdministrator() ||
user.isEditor() ||
user.isUser()) {

// execute action

}

Hard Coded Roles

• Makes “proving” the policy of an application
difficult for audit or Q/A purposes

• Any time access control policy needs to
change, new code need to be pushed

• Fragile, easy to make mistakes

Order Specific Operations

Imagine the following parameters
http://example.com/buy?action=chooseDataPackage
http://example.com/buy?action=customizePackage
http://example.com/buy?action=makePayment
http://example.com/buy?action=downloadData

Can an attacker control the sequence?

Can an attacker abuse this with concurrency?

Never Depend on Untrusted Data
• Never trust user data for access control decisions

• Never make access control decisions in JavaScript

• Never make authorization decisions based solely on

– hidden fields
– cookie values
– form parameters
– URL parameters
– anything else from the request

• Never depend on the order of values sent from the client

Access Control Issues
• Many administrative interfaces require only a password for authentication
• Shared accounts combined with a lack of auditing and logging make it

extremely difficult to differentiate between malicious and honest
administrators

• Administrative interfaces are often not designed as “secure” as user-level
interfaces given the assumption that administrators are trusted users

• Authorization/Access Control relies on client-side information (e.g., hidden
fields)

<input type=“text" name=“fname" value=“Derek”>
<input type=“text" name=“lname" value=“Jeter”>
<input type=“hidden" name=“usertype" value=“admin”>

Attacking Access Controls

• Elevation of privileges

• Disclosure of confidential data
– Compromising admin-level accounts often results in

access to user’s confidential data

• Data tampering
– Privilege levels do not distinguish users who can only

view data and users permitted to modify data

Testing for Broken Access Control

• Attempt to access administrative components or functions as an
anonymous or regular user

– Scour HTML source for “interesting” hidden form fields

– Test web accessible directory structure for names like admin,
administrator, manager, etc (i.e. attempt to directly browse to
“restricted” areas)

• Determine how administrators are authenticated. Ensure that
adequate authentication is used and enforced

• For each user role, ensure that only the appropriate pages or
components are accessible for that role

• If able to compromise administrator-level account, test for all other
common web application vulnerabilities (poor input validation,
privileged database access, etc)

Defenses Against Access Control Attacks

• Implement role based access control to assign
permissions to application users for vertical access
control requirements

• Implement data-contextual access control to assign
permissions to application users in the context of
specific data items for horizontal access control
requirements

• Avoid assigning permissions on a per-user basis
• Perform consistent authorization checking routines on

all application pages
• Where applicable, apply DENY privileges last, issue

ALLOW privileges on a case-by-case basis

Defenses Against Access Control
• Where possible restrict administrator access to

machines located on the local area network (i.e. it’s
best to avoid remote administrator access from
public facing access points)

• Log all failed access authorization requests to a
secure location for review by administrators

• Perform reviews of failed login attempts on a
periodic basis

• Utilise the strengths and functionality provided by
the SSO solution you chose, e.g. Netegrity

Best Practice: Code to the Activity

if (AC.hasAccess(ARTICLE_EDIT)) {
//execute activity

}

• Code it once, never needs to change again
• Implies policy is persisted/centralized in some way
• Requires more design/work up front to get right

Best Practice: Centralized ACL Controller

• Define a centralized access controller

– ACLService.isAuthorized(ACTION_CONSTANT)
– ACLService.assertAuthorized(ACTION_CONSTANT)

• Access control decisions go through these simple API’s

• Centralized logic to drive policy behavior and persistence

• May contain data-driven access control policy
information

Using a Centralized Access Controller

In Presentation Layer
if (isAuthorized(VIEW_LOG_PANEL))
{

<h2>Here are the logs</h2>
<%=getLogs();%/>

}

In Controller
try (assertAuthorized(DELETE_USER))
{

deleteUser();
}

Best Practice: Verifying policy server-side

• Keep user identity verification in session

• Load entitlements server side from trusted
sources

• Force authorization checks on ALL requests
– JS file, image, AJAX and FLASH requests as well!
– Force this check using a filter if possible

SQL Integrated Access Control
Example Feature

http://mail.example.com/viewMessage?msgid=2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!

select * from messages where messageid = 2356342 AND
messages.message_owner = <userid_from_session>

Access Control Positive Patterns

• Code to the activity, not the role
• Centralize access control logic
• Design access control as a filter
• Deny by default, fail securely
• Build centralized access control mechanism
• Apply same core logic to presentation and

server-side access control decisions
• Server-side trusted data should drive access

control

Data Contextual Access Control

Data Contextual / Horizontal Access Control API examples

– ACLService.isAuthorized(EDIT_ORG, 142)
– ACLService.assertAuthorized(VIEW_ORG, 900)

Long form

– isAuthorized(user, EDIT_ORG, Organization.class, 14)

• Essentially checking if the user has the right role in the
context of a specific object

• Protecting data a the lowest level!

Data Contextual Access Control

User
User ID User Name

Role/Activity
Role/Activity ID Role/Activity Name

Entitlement / Privilege

User ID Role/Activity ID Data Type ID Data Instance Id

Data Type
Data ID Data Name

