
Security of Containers

Shruti Kulkarni

About myself

• Enterprise Security Architect
• 12+ years of experience in Information

Security
• Experience with security frameworks like

ISO27001 and PCI-DSS
• Policies, Processes and Technology
• CISA, CRISC, CISSP, CCSK, ITILv3
• Architecture, Design, Implementation and

Maintenance of security systems

What are containers?
• An application container is a

mechanism that is used to isolate
applications from each other
within the context of a running
operating system instance.
– Conceptually, an application

container is similar to a jail
filesystem. When configured to do
so, applications contained within a
container cannot access components
outside of the established boundary.

– A container has a segmented
network stack, process space and
instance of a filesystem

– A container shares the operating
system with other containers that
are running on the host

• Containers like any other asset
need to be assured for security

Uses of containers

• Malware analysis
• Easier deployment of repetitive jobs
• Micro-services
• Deployments to hybrid cloud, multi-

cloud

Background of containers

• Linux features
– Namespaces –
• CGroups – Isolate and manage resources
• PID namespaces – Creates hierarchies of

isolated sub-processes
• IPC – Inter-process communication
• Network – Separates network stack
• Mount – mount and unmount file systems

without affecting the host file system
• User – Separates user ids and host ids between

hosts and containers
• UTS – provide isolation of two system identifiers:

the hostname and the NIS domain name

– chroot – allows a process to change its root
file system

Parent PID namespace

1

3

2

4

Child
namespac

e
5

6

7

Parent PID namespace

Child namespace

5

6

7

Child namespace

5

6

7

N
e
tw

o
r

k
In

te
rf

a
ce

N
e
tw

o
r

k
In

te
rf

a
ce

N
e
tw

o
rk

 I
n
te

rf
a
ce

R
o
u
ti

n
g

P
ro

ce
s

s

Security in Containers
• What are the risks
– Unauthorised inter-process

communication (5 -> 8)
– A process running as root (8 running

as root)
– Unauthorised network connections
– Denial of Service via excessive

consumption of resources

• How are they addressed
– Namespaces
– SELinux
– AppArmor
– Seccomp BPF

Parent PID namespace

Child namespace

5

6

7

Child namespace

8

6

7

N
e
tw

o
rk

In

te
rf

a
ce

N
e
tw

o
rk

In

te
rf

a
ce

N
e
tw

o
rk

 I
n

te
rf

a
ce

R
o
u
ti

n
g

Pr

o
ce

ss

Container images

• Container image
– At rest

• Container
–When running

Who does the Heavy Lifting?

• Container runtimes / container software
– Unpacks required files and metadata of an

image before handing off to kernel
–Makes API call to kernel
– Initiates isolation and mounts the files
– Responsible for:

• Handling user input
• Handling input over an API often from a Container

Orchestrator
• Preparing a container mount point

Connecting them all

• Container orchestration
– Pulls images from registry
– Schedules workloads within a cluster

Why is security assurance for
containers essential?

• Attack surface
includes:
– Isolation of containers
– Configuration of

containers
– Container software
– Host operating system

• And the applications
themselves

Why is security assurance for
containers essential?

• Threats include:
– Lateral privilege escalation
– Exploitation of lack of secure

configs
– Exploitation of vulnerabilities

in container software
– Exploitation of vulnerabilities

on host operating system

• Exploitation of vulnerabilities
and configurations of the
applications

The Start – Operating System layer

· Vulnerabilities:

– Operating systems have vulnerabilities if they
are not hardened by removing unwanted
services and protocols.

– Operating systems are applications and have
coding errors. Coding errors become
vulnerabilities if they are not patched on time.

– Incorrectly applied access control opens an
attack surface that can be used by malicious
actors

– So on

· Controls
– Operating Systems

• Secure configurations are critical. Do not mix
containerized and non-containerized workloads on the
same host instance

• Apply security controls outlined for operating systems
(hardening, patching, FIM, access control)

– Network

• Implement & enforce network segmentation

• Following are the network configurations that apply in
this scenario

– Bridge
– Host
– None

Container specific OS
(Examples include CoreOS
Container Linux, Project
Atomic Google Container-
Optimized OS, Bottlerocket
from AWS)

The Next Layer – Container Software / Runtime

• Controls
• Runtime

• Keep container software up to date
• Use role-based access control (RBAC) to restrict access to key

components
• Runtime security

• Document known container processes
• Monitor writes to operating system
• Document and monitor network traffic
• Explicitly define the permissions required by the container and its

components

· Vulnerabilities:

– Malicious actors trying to break out of
container isolation

– Missing patches on container software /
runtime

– /bin or /etc writes on operating systems

– Ingress / egress traffic from containers

– Rogue containers

Container Software /
runtimes (runC, Docker, AWS
Fargate, Google Kubernetes
Engine, Amazon ECS, LXC)

The Next Layer – Storage and retrieval

· Docker registry, Azure
registry, OpenShift
registry, redhat registry,
Google registry,
Kubernetes

· Vulnerabilities:

– Missing access control

– Lack of secure connection

– Security of the orchestration tool

– Images created with sensitive data

• Controls
• Registry

• Secure connection to registries (over TLS connection)
• Secure images stored in registries
• Role based access control applied to registries
• Scan images

• Orchestration
• Access control (based on least privileges and separation of duties)
• Grouping containers of relative sensitivity
• Introducing nodes securely into cluster
• Ensure that only containers with the same level of exposure (e.g.

Internet facing) run on the same node.
• Ensure that only containers with the same data classification level run

on the same node.
• Ensure that containers that are no longer needed are deleted.
• Rotate the keys used by the orchestration process on a regular basis
• Monitor Orchestration tool for vulnerabilities and patch regularly
• Enable role based access control
• Use registry namespace

The Next Layer – Creation, testing and accreditation
• Control

• Image creation and vulnerability scanning (pipeline-based
build approach, address component vulnerabilities and malicious
code)

• Secure configuration best practices (validation of configuration
settings, access control – users running as non-privileged users,
monitoring, no remote administration tools)

• Separating secrets from containers (DB connection string part
of a separate container with different access control, using secret
management systems)

• Trusted images (images with cryptographic signatures)

• CI/CD pipeline

· Vulnerabilities:

– Poisoned images

– Embedded credentials

– Lack of access control

– Outdated components

– And so on

Containers themselves

• Control
• Use immutable images to instantiate containers
• Enforce isolation/ segmentation by application / service /

workload
• Monitor containers for suspicious process or file system

activity
• Quarantine compromised containers
• If not using immutable images, ensure an automated

software update/replace process is implemented
• Limit/ restrict access to resources (file system / kernel)
• Regular automated security scans which cover the whole

operating system and not just container related elements

· Vulnerabilities:

– Unauthorised inter-process
communication

– Unauthorised breakout

– Privilege escalation (account gaining
uid0 privileges)

– Stale images

– Misconfigured applications running in
containers

– And so on

Summary

• Securing containers is not security of
containers

• To ensure that you have a secure
container ecosystem, secure the
whole stack
– Operating system
– Container runtime
– Image repositories
– Orchestration tools
– And the applications running in the

containers

Questions

?

	Slide 1
	About myself
	What are containers?
	Uses of containers
	Background of containers
	Security in Containers
	Container images
	Who does the Heavy Lifting?
	Connecting them all
	Why is security assurance for containers essential?
	Why is security assurance for containers essential?
	The Start – Operating System layer
	The Next Layer – Container Software / Runtime
	The Next Layer – Storage and retrieval
	The Next Layer – Creation, testing and accreditation
	Containers themselves
	Summary
	Questions

