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About myself

• Enterprise Security Architect
• 12+ years of experience in Information 

Security
• Experience with security frameworks like 

ISO27001 and PCI-DSS
• Policies, Processes and Technology
• CISA, CRISC, CISSP, CCSK, ITILv3 
• Architecture, Design, Implementation and 

Maintenance of security systems



What are containers?
• An application container is a 

mechanism that is used to isolate 
applications from each other 
within the context of a running 
operating system instance.
– Conceptually, an application 

container is similar to a jail 
filesystem. When configured to do 
so, applications contained within a 
container cannot access components 
outside of the established boundary. 

– A container has a segmented 
network stack, process space and 
instance of a filesystem 

– A container shares the operating 
system with other containers that 
are running on the host 

• Containers like any other asset 
need to be assured for security



Uses of containers

• Malware analysis
• Easier deployment of repetitive jobs
• Micro-services
• Deployments to hybrid cloud, multi-

cloud



Background of containers

• Linux features
– Namespaces – 
• CGroups – Isolate and manage resources
• PID namespaces – Creates hierarchies of 

isolated sub-processes 
• IPC – Inter-process communication
• Network – Separates network stack
• Mount – mount and unmount file systems 

without affecting the host file system
• User – Separates user ids and host ids between 

hosts and containers
• UTS – provide isolation of two system identifiers: 

the hostname and the NIS domain name 

– chroot – allows a process to change its root 
file system
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Security in Containers
• What are the risks
– Unauthorised inter-process 

communication (5 -> 8)
– A process running as root (8 running 

as root) 
– Unauthorised network connections 
– Denial of Service via excessive 

consumption of resources

• How are they addressed
– Namespaces
– SELinux
– AppArmor
– Seccomp BPF
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Container images 

• Container image
– At rest

• Container
–When running



Who does the Heavy Lifting?

• Container runtimes / container software
– Unpacks required files and metadata of an 

image before handing off to kernel
–Makes API call to kernel
– Initiates isolation and mounts the files
– Responsible for:

• Handling user input
• Handling input over an API often from a Container 

Orchestrator
• Preparing a container mount point



Connecting them all

• Container orchestration 
– Pulls images from registry
– Schedules workloads within a cluster



Why is security assurance for 
containers essential?

• Attack surface 
includes:
– Isolation of containers
– Configuration of 

containers
– Container software
– Host operating system

• And the applications 
themselves



Why is security assurance for 
containers essential?

• Threats include:
– Lateral privilege escalation 
– Exploitation of lack of secure 

configs
– Exploitation of vulnerabilities 

in container software
– Exploitation of vulnerabilities 

on host operating system

• Exploitation of vulnerabilities 
and configurations of the 
applications 



The Start – Operating System layer

· Vulnerabilities:

– Operating systems  have vulnerabilities if they 
are not hardened by removing unwanted 
services and protocols.

– Operating systems are applications and have 
coding errors. Coding errors become 
vulnerabilities if they are not patched on time.

– Incorrectly applied access control opens an 
attack surface that can be used by malicious 
actors 

– So on

· Controls
– Operating Systems

• Secure configurations are critical. Do not mix 
containerized and non-containerized workloads on the 
same host instance

• Apply security controls outlined for operating systems 
(hardening, patching, FIM, access control)

– Network

• Implement & enforce network segmentation

• Following are the network configurations that apply in 
this scenario

– Bridge
– Host
– None

Container specific OS 
(Examples include CoreOS 
Container Linux, Project 
Atomic Google Container-
Optimized OS, Bottlerocket 
from AWS)



The Next Layer – Container Software / Runtime

• Controls
• Runtime

• Keep container software up to date
• Use role-based access control (RBAC) to restrict access to key 

components
• Runtime security

• Document known container processes 
• Monitor writes to operating system
• Document and monitor network traffic 
• Explicitly define the permissions required by the container and its 

components

· Vulnerabilities:

– Malicious actors trying to break out of 
container isolation

– Missing patches on container software / 
runtime

– /bin or /etc writes on operating systems

– Ingress / egress traffic from containers

– Rogue containers 

Container Software / 
runtimes (runC, Docker, AWS 
Fargate, Google Kubernetes 
Engine, Amazon ECS, LXC)



The Next Layer – Storage and retrieval

· Docker registry, Azure 
registry, OpenShift 
registry, redhat registry, 
Google registry, 
Kubernetes

· Vulnerabilities:

– Missing access control

– Lack of secure connection

– Security of the orchestration tool

– Images created with sensitive data 

• Controls
• Registry

• Secure connection to registries (over TLS connection) 
• Secure images stored in registries
• Role based access control applied to registries
• Scan images

• Orchestration
• Access control (based on least privileges and separation of duties)
• Grouping containers of relative sensitivity
• Introducing nodes securely into cluster
• Ensure that only containers with the same level of exposure (e.g. 

Internet facing) run on the same node.
• Ensure that only containers with the same data classification level run 

on the same node.
• Ensure that containers that are no longer needed are deleted.
• Rotate  the keys used by the orchestration process on a regular basis
• Monitor Orchestration tool for vulnerabilities and patch regularly
• Enable role based access control
• Use registry namespace



The Next Layer – Creation, testing and accreditation
• Control

• Image creation and vulnerability scanning (pipeline-based 
build approach, address component vulnerabilities and malicious 
code)

• Secure configuration best practices (validation of configuration 
settings, access control – users running as non-privileged users, 
monitoring, no remote administration tools)

• Separating secrets from containers (DB connection string part 
of a separate container with different access control, using secret 
management systems)

• Trusted images (images with cryptographic signatures)

• CI/CD pipeline

· Vulnerabilities:

– Poisoned images

– Embedded credentials

– Lack of access control

– Outdated components

– And so on



Containers themselves

• Control
• Use immutable images to instantiate containers
• Enforce isolation/ segmentation by application / service / 

workload
• Monitor containers for suspicious process or file system 

activity
• Quarantine compromised containers
• If not using immutable images, ensure an automated 

software update/replace process is implemented
• Limit/ restrict access to resources (file system / kernel)
• Regular automated security scans which cover the whole 

operating system and not just container related elements

· Vulnerabilities:

– Unauthorised inter-process 
communication

– Unauthorised breakout

– Privilege escalation (account gaining 
uid0 privileges)

– Stale images

– Misconfigured applications running in 
containers

– And so on



Summary

• Securing containers is not security of 
containers

• To ensure that you have a secure 
container ecosystem, secure the 
whole stack
– Operating system
– Container runtime
– Image repositories
– Orchestration tools
– And the applications running in the 

containers



Questions

?
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