

$whoami
— Security engineer @ Fb > 2 years
— Security consultant
—1 <3 CTFs (LC/BC)

— | <3 server side bugs and automating the
detection

— @the_stOrm

* Agenda
— Setting the scene
— Securing the codebase
— Example of rules
— Static analysis use cases
— Myth busting
— Demo! :O

* Engineering @ FB

www for 2015:
/\

« 609 Pushes B \
« 51 weekly pushes

=
« 439 daily pushes \/
. 94 hotfixes f/\/\ /\/\/\
k |

e

Commits pe/" Week Android for 2015: iOS for 2015:
« FB for Android: « FBforiOS:
« 34 releases « 25 releases
« 1 hotfix « 5 hotfixes
« Messenger « Messenger:
« 39 releases « 27 releases
« 0 hotfixes « 6 hotfixes

Big Code: Developer Infrastructure at Facebook’s Scale

https:/www.facebook.com/FacebookforDevelopers/videos/10152800517193553/ 4

* Engineering @ FB

DONE IS STAY

BETTER FAL FOCUSED
THAN HARDER & KEEP
PERFELT SHIPPING

Nothing at Facebook
IS somebody else's problem

» Securing the codebase
— Secure frameworks
— Security reviews

— Automation (static and dynamic analysis)
— Whitehat

« Secure frameworks
— XHP
— Hack
— Django
* Limitations
— Enforcement
— Depends on the engineer

* Manual security reviews
— Find cool bugs

» Limitations
— Time consuming

— Does not scale
— Completeness

» Automation (Program analysis)

— Scales

— Find low hanging fruits

— And difficult bugs (Fuzzing)

— Continuous detection [+ prevention]
» Limitations

— False positives and negatives

— Difficult to get right

 \Whitehat
— Continuous detection

— Very unique bugs/talent
» Limitations
— Test in prod!
— Expensive for small companies?
— Signal to noise ratio

Automation (static analysis)

» Automation (static analysis)

— Scale

— Tens of millions LoC
— Thousand commits/day

— Performance
* No run-time overhead (e.g fuzzing)
* Grepping millions of LoC

— Completeness
— Proactive vs Reactive

+ Static analysis design

[

T Nol

security

review

refine with
SWE

triage

can do IRAGS add a | st ~
— — 5

diffs

bug is
dead

14

 Tips to build good static analysis

— Coverage
« Understand the attack surface
 Define sources
* Define sinks

— Simplicity
« Easy to use
« Configuring the sources/sinks
» Adding sanitizers

Tips to build good static analysis
— Improving signal

» Excluding False positives

 Finding false negatives

— Feedback to the framework
— Speed

» Security vulnerabilities we detect

— We can currently detect more than 20 types of
security issues including
* Higher-order command injection
« HTTP status codes as privacy oracles
* Arbitrary file reads/writes
« Server-side Request Forgery (SSRF)
« SQL
« XSS

Bug detection - Arbitrary file reads/writes
— Filename going to dangerous function

$path = $_FILES[‘upfile’][‘name’];
/] ..
Filesystem::readFile($path);

$path = $ FILES[‘upfile’][“tmp_name’];
/] ..
Filesystem::readFile($path);

» Bug detection - command injection

« Secure because of high-quality frameworks

$t = attacker_controlled();
// .. many lines ..
execx(“zip %s”, $t);

$t = attacker _controlled();
// ..

execx(“zip a.zip -T '--unzip-command=%s'”, $t);

« Commands can execute other commands

--unzip-command cmd

« Static analysisrtooleanunderstard-formatstringon is used. on unix, to

use a copy of unzip in the current directory instead of the standard systenT unzip, could use:
zip archive filel file2 -T -TT "./unzip -tqqg"

In cmd, {} is replaced by the name of the temporary archive, otherwise the name of the archive is
appended to the end of the command. The return code is checked for success (0 on Unix).

* Bug detection - Privacy oracles

— Static analysis can check
» action taken under attacker control?
« action is influenced by privacy check?

$group _id = attacker _controlled();

$group_id = attacker_controlled(); // Lload with privacy check
if ($group_id === 100) $data = isMember(auth_user(), group id);
throw HTTP 404(); if ($data === null)

throw HTTP_404();

« Use cases

— Regular analysis
 Triaged by security engineers
* Triaged by team owners
— On-demand analysis
« Whitehat report
« Security reviews

» Use cases
— Diff analysis
* Analyze base repo
* Analyze base repo + diff
* Find new issues
 High confidence issues => auto comment
* Mid confidence => Oncall/product team

* Myth busting
— Does it scale?
e 20 mins for 10s millions of LoC
—Is it precise?
 “Static analyzers are noisy”

— Is it useful?
* “They only find trivial errors”

* Analysis dashboard

code
6,053
6,084
6,309
7,000
6,304
6,082
6,026
6,054
6,029
6,052
6,086
6,031
6,059
6,030
6,064
6,017
6,016
6,051
6,310
6,095
6,070
6,089
6,066
6,305
6,087
6,020
6,018
6,062

6,050

good_signal 1
100.0
100.0
100.0 0.0%!
100.0 0.0%
91.4 8.6%
0.0%
20.0%
21.6%
25.0%

12.5%

450 10.0%
412 26.5%
40.0 40.0%
38.1 14.3%
35.7 14.3%
333 44.4%
333 66.7%

214 71.4%

20.0 60.0%

47.1%

75.0%

23.1%

85.7%

6.7%

false_positive_pct

valid_pct
100.0%
100.0%
100.0%
100.0%
34.3%
66.7%
0.0%
18.9%
75.0%
0.0%
40.0%
0.0%
42.9%
14.7%
0.0%
20.0%
26.5%
20.0%
19.0%
19.0%
33.3%
22.2%
21.4%
0.0%
5.9%
6.3%
7.7%
0.0%

0.0%

bad_practice_pct
0.0%
0.0%
0.0%
0.0%
57.1%
16.7%
80.0%
59.5%
0.0%
75.0%
20.0%
57.1%
14.3%
35.3%
50.0%
25.0%
14.7%
20.0%
19.0%
16.7%
0.0%
1.1%
0.0%
20.0%
13.7%
12.5%
7.7%
14.3%

3.3%

dont_care_pct
0.0%
0.0%
0.0%
0.0%
0.0%
16.7%
0.0%
0.0%
0.0%
12.5%
32.5%
14.3%
28.6%
32.4%
50.0%
45.0%
32.4%
20.0%
47.6%
50.0%
22.2%
0.0%
71%
20.0%
33.3%
6.3%
61.5%
0.0%

90.0%

24

* Have you heard about Pyre?

— Pyre is a fast, scalable type checker for large
Python 3 codebases

— Open source
» Python static analysis?

e Demo?

4

X“

We are hiring <3

Questions?

